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This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we
choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and
nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we
present the study of rovibrational energy transfer in Ar+ CO collisions in the presence of an intense laser
field.

I. Introduction

The study of dynamic molecular processes in the presence
of an electromagnetic field is important to both experimentalists
and theorists. We are particularly interested in molecular
rearrangement dynamics and quantum coherent control of
bimolecular chemical reactions in the presence of an electro-
magnetic field.

As discussed by Light and co-workers (ref 1 and references
therein):

Intense laser radiation can affect kinetic processes in gas
mixtures in two distinct ways: It can alter the Boltzmann
population of the internal states of the atoms and molecules in
the system, thus inducing kinetics of excited species, and in
some circumstances, it can alter the dynamics of the collision
events themselves even in the absence of prior population
changes. The theoretical approaches to these two classes of
processes are quite different, the first requiring detailed rate
constants or cross sections for the excited initial states and the
second requiring that the laser field be included in the dynamics
of the collision process itself. The spectrum of different collision
processes which could be influenced by the laser field is as broad
as the collision process itself, including collision induced
absorption, laser induced collisional energy transfer, ionization,
and chemical reaction.

This is because the collision system in the presence of a laser
field has a much richer range of phenomena than in the absence
of the laser field. When the laser field is included, photons can
be absorbed or emitted during the collision process due to
additional photon-system couplings. If the initial and final states
are not in resonance with the laser field, then the induced
transitions must be associated with the short-range interaction.
The dynamics of the colliding system are thus greatly affected
by the presence of the laser field, and a full quantum mechanical
treatment of the problem should be used. George and collabora-
tors have shown the necessity of this approach.2-4

Another important example is the coherent control of bi-
molecular reactions, which can be implemented by methods

similar to those used by Brumer and Shapiro to control collinear
chemical reactions.5 In these methods, coherent control of a
bimolecular collision is accomplished by photoassociating the
mixed atom-diatom system to form a triatomic complex of
excited states. The first excitation step, the pump phase, uses a
picosecond laser pulse to create a coherent superposition of
excited rovibrational states of the triatomic complex. The excited
wave packet created by the pump pulse then evolves for a
variable time. A second laser pulse, the dump pulse, stimulates
a transition to the ground state that preferentially favors a
particular reactive or nonreactive channel. The experimental
control parameters are the relative detuning of the pump pulse
from the superposed excited state levels and the time delay
between the pump and dump pulses. Brumer and Shapiro
showed that, theoretically, nearly 100% control may be obtained
using their collinear model for the H+ HD bimolecular
collision. They use the shape of the pulses (the excitation center-
line energy and pulse width) to control the dynamics leading
to the breaking of one bond and the formation of another.

This paper is the first of a series showing the effects of laser
fields on atom-diatom molecular collisions. Many researchers
have shown great interest in atom-radiation interactions, and
different derivations have been established for different applied
gauges. In 1979, Kobe advocated the use of the multipolar gauge
on the basis of gauge invariance.6,7 However, the general theory
was not established specifically for an atom-diatom system
interacting with a laser field. What is more, nonadiabatic
collisions have interested many researchers and will be important
for some systems. It will be a challenge to include the
nonadiabatic terms in the atom-radiation interaction. We herein
provide the theory approach including nonadiabatic effects in
the atom-diatom collision system with a laser field.

In section II of this paper, we develop the general theory for
using the multipolar gauge to deal with the atom-radiation
interaction (ARI). Adiabatic and nonadiabatic cases will both
be developed. If the electromagnetic field is intense, then one
must also quantize the photon field. An application of the theory
to the strong laser field case is included in section III. The
particular application studied in the current paper is that of
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rovibrational energy transfer in Ar+ CO collisions in the
presence of an intense laser field. Subsequent publications will
treat reactive molecular collisions in the presence of an
electromagnetic field. Results for this system will be presented
in section IV, and concluding remarks will be provided in
section V.

II. General Theory

A. ARI in a Three-Atom System. The main problem we
are dealing with is the behavior of an atom-diatom collision
system in a laser field. Our derivation of this problem begins
with the time-dependent Schro¨dinger equation (TDSE)

where the full Hamiltonian is

The sum runs over both the nuclei and the electrons,pbR )
-ip∇Rb, V0 is the usual interparticle Coulombic potential energy
for the whole system,AB is the vector potential,φ is the external
scalar potential,qR is -e for an electron and+ZRe for nuclei,
andmR are the masses of the particles.

Here, we want to specify thatφ(rbR,t) is the scalar potential
for the external field but not the total scalar potential for the
molecular system and the field. The total scalar potential is

where the interparticle Coulombic potential energy isV0 ) ∑R
N

qRφsys(rbR,t), which depends on the scalar potential of the atom-
diatom system.

To simplify the problem, we will partition the Hamiltonian.
The total Hamiltonian is the sum of the molecular Hamiltonian
(field-free Hamiltonian)Ĥ0 and the interaction HamiltonianĤint

where theĤ0 and Ĥint terms are chosen differently based on
the associated gauges, andH0 always contains the interparticle
CoulombicV0 term.

B. Multipolar Gauge in ARI Without Nonadiabatic
Coupling. We use the multipolar gauge to simplify the full
Hamiltonian and so that the Hamiltonian will have the proper
gauge invariance.7 In this subsection, the derivation is limited
to an adiabatic case, and we will use a Born-Oppenheimer
expansion to include the nonadiabatic terms in the next
subsection.

The multipolar gauge is defined as follows8

with a boundary condition for the gauge transformation function
øM(rb,t) at the origin

where the subscript “M” denotes the multipolar gauge. In eqs
5 and 6, we neglect the subscriptR for simplicity.

Using the multipolar gauge, we can express the vector
potential and the scalar potential in terms of theEB andBB fields

and we know that bothEB andBB must be gauge invariant.
A multipole expansion of the potentials in eq 7 and eq 8 can

be made by expanding the fields about the origin (center-of-
mass of the system). Here, we employ the long wavelength
approximation (LWA), where only the first few terms of the
expansion need to be included because the laser wavelength is
much longer than the scale of the atom or diatom

where the definition of the derivative is∂′j ) ∂/∂r′j, and rj

values are the Cartesian components of the vectorrb.
In this expansion, the first term inABM is the magnetic dipole

moment, the first term inφM is the electric dipole moment, and
the second term inφM is the electric quadrupole term. It should
be specified that the electric quadrupole and magnetic dipole
terms are of the same order in their contribution to the
electromagnetic field.9 By neglecting these two terms, we rewrite
the equations forABM andφM as

This approximation is called the electric dipole approximation
(EDA).

Here, we need to specify that the application of the LWA
and EDA is valid only in the following situation: the subsystem,
which would be excited by the laser field, should be confined
in a region that is much smaller than the laser wavelength. For
a larger subsystem, we argue that the electric quadrupole and
magnetic dipole terms should be taken into consideration. In
this case of the diatom subsystem, this condition is met and the
two approximations are valid.

Therefore, with the LWA and the EDA, the Hamiltonian
becomes

where

is the dipole moment operator. The time-independent part of
the Hamiltonian,Ĥ0, is

Since the interaction part in the Hamiltonian under the multipolar

ĤΨ ) ip
∂

∂t
Ψ (1)

Ĥ ) ∑
R

N { 1

2mR

[pbR - qRAB( rbR,t)]2 + qRφ( rbR,t)} +

V0( rb1,r2, ...,rbN) (2)

φtotal ) ∑
R

N

φtotal( rbR,t) ) ∑
R

N

[φ( rbR,t) + φsys( rbR,t)] (3)

Ĥ ) Ĥ0 + Ĥint (4)

rb·ABM( rb,t) ) 0 (5)

φ(0,t) - ∂

∂t
øM(0,t) ) 0 (6)

ABM( rb,t) ) - rb × ∫0

1
uBB(urb,t) du (7)

φM( rb,t) ) - rb · ∫0

1
EB(urb,t) du (8)

ABM( rb,t) ) - 1
2

rb × BB(0,t) + ‚‚‚ (9)

φM( rb,t) ) - rb·EB(0,t) - ∑
i

∑
j

1

2
rirj∂′jEi( rb′,t)| rb′)0 + ‚‚‚ (10)

ABM( rb,t) ≈ 0 (11)

φM( rb,t) ≈ - rb·EB(0,t) (12)

Ĥ ) ∑
R

1

2mR

pR
2 + V0 - µ̂·EB(t) ) Ĥ0 - µ̂·EB(t) (13)

µ̂ ) ∑
R

qR rbR (14)

Ĥ0 ) ∑
R

1

2mR

pR
2 + V0 (15)
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gauge transformation has anrb term, it is said that the multipolar
gauge has a “length form”.

The term containing the dipole operator is responsible for
coupling the states of the system, and the coupling matrix
element for the multipolar gauge can be written as

where the indices “k” and “l” represent different states of the
whole system.

C. Multipolar Gauge in ARI with Nonadiabatic Coupling.
It will be necessary to include nonadiabatic terms for systems
that have conical intersections in the relevant energy states. In
this situation, the full Hamiltonian in eq 2 can be partitioned
into three parts

where

and

The symbol “n” denotes nuclei, and the symbol “e” denotes
electrons. Here,R in eq 18 runs over all the nuclei, andR in eq
19 runs over all the electrons. TheRB terms are the nuclear
coordinates, and therb terms are the electronic coordinates.

If we introduce the basisΦ(rb;RB) (the eigenfunctions of the
electronic Hamiltonian) and use a Born-Oppenheimer expan-
sion, then we will end up with the following Hamiltonian after
integration over the electronic space “r ”

The first part of the full Hamiltonian in the nuclear space “R”
is

where the nonadiabatic termFB is

For simplicity, the sum is implied, and we will rewrite eq 21
as

Notice that these operators are matrixes in the electronic state
basis.

If we apply the EDA to the multipolar gauge, thenAB ) 0
and the total Hamiltonian in the nuclear space “R” will be

whereµb is the dipole operator and

If we choose to let the molecular Hamiltonian be

then the coupling matrix element for the multipolar gauge is

We notice here that the interaction Hamiltonian has the same
form as in the adiabatic case. However, the basis functions are
different because the different basis-determining Hamiltonian
now includes the nonadiabatic termsFB.

III. Atom -Diatom Collisions in a Laser Field

In this section, we apply the theory of section II to a problem
of an S-state, structureless atom colliding with aΣ-state diatomic
molecule in the presence of an intense laser field. We want to
specify that we will not consider the nonadiabatic terms in this
study for now; we will limit our focus to the adiabatic case.
This limitation is valid for the collision energies and laser
frequency used herein.

We use the center-of-mass of the atom (A)-diatom (BC) as
our coordinate origin, and we ignore the center-of-mass motion.
The position vectorsrb andRB are measured from the center-of-
mass of the diatom BC to the atom A and from the atom B to
the atom C, respectively. The angle betweenrbandRB is denoted
by θ. In the space-fixed (SF) theory, the angles (θr,φr) and
(θR,φR) define the directions of the position vectorsrb and RB,
whereθ andφ are the polar and azimuthal angles, respectively.

A. SF Theory. First, let us discuss the Hamiltonian of the
atom-diatom collision in the presence of a strong laser field
in an SF set of coordinates. The body-fixed (BF) formulation
has been defined elsewhere.10 The total HamiltonianĤ of the
collision system in the presence of a laser field with a total
energyE satisfies the time-independent Schro¨dinger equation

where the Dirac notation|Ψ〉 represents the wave function of
the whole system. The total HamiltonianĤ of the system
includes three terms

The first term, the field-free HamiltonianĤ0, is the Hamiltonian
for the collision system in the absence of the laser field; the
second term, the radiation HamiltonianĤrad, is the Hamiltonian
for a radiation field; the last term, the radiative interaction
Hamiltonian Ĥint, is the Hamiltonian for the interaction of
the laser radiation field with the system. This derivation is
slightly different from that in section II, but the theory is
equivalent.

Vkl ) 〈k| Ĥint|l〉
) -〈k|EB·µ̂|l〉 (16)

Ĥ ) Ĥn + Ĥe + V0 (17)

Ĥn(RB) ) ∑
R

n { 1

2mR

[pbR - qRAB(RBR,t)]2 + qRφ(RBR,t)} (18)

Ĥe( rb;RB) ) ∑
R

e { 1

2mR

[pbR - qRAB( rbR,t)]2 + qRφ( rbR,t)} (19)

Ĥ(RB)ij ) 〈Φi|Ĥn|Φj〉 rb + 〈Φi|Ĥe|Φj〉 rb + 〈Φi|V0|Φj〉 rb (20)

〈Φ|Ĥn|Φ〉 rb )

∑
R

n { 1

2mR
[p

i
∇Rb - qRAB(RBR,t) +

p

i
FB]2

+ qRφ(RBR,t)} (21)

FBij ) 〈Φi|∇B|Φj〉 rb (22)

〈Φ|Ĥn|Φ〉 rb ) 1
2m [pi ∇B - qAB(RB,t) + p

i
FB]2

+ qφ(RB,t) (23)

HBM(RB) ) 1
2m [pi ∇RB + p

i
FB]2

- µ̂·EB + Ve

) - p2

2m
[∇RB + FB]2 - µ̂·EB + Ve (24)

Ve ) 〈Φ|Ĥe|Φ〉 + 〈Φ|V0|Φ〉 (25)

Ĥ0 ) - p2

2m
[∇RB + FB]2 + Ve (26)

Vkl ) - 〈k|EB·µ̂|l〉 (27)

Ĥ|Ψ〉 ) E|Ψ〉 (28)

Ĥ ) Ĥ0 + Ĥrad + Ĥint (29)
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In the center-of-mass coordinate system, the field-free Hamil-
tonianĤ0 (in cgs units) can be written as

with

whereLB is the orbital angular momentum operator of the atom
A relative to the diatomic molecule BC,V is the intermolecular
potential energy,µ is the atom-diatom reduced mass

and ĤBC is the Hamiltonian of the isolated diatom BC. In the
center-of-mass coordinate system of the diatomic molecule, the
HamiltonianĤBC can be written as

where JB is the rotational angular momentum operator of the
vibrating rotating diatomic molecule BC,VBC is the intra-
molecular potential energy of diatom BC, andµBC is the reduced
mass of diatom BC

The eigenfunctions ofĤBC must satisfy11

whereR̂ ≡ (θR,φR), øjν is a vibrational wave function,Yjmj is a
spherical harmonic, and theεjν are the rotation-vibration energy
levels.

The radiation HamiltonianĤrad can be expressed as

Since each mode of the radiation field is specified by the
wavevectork and the polarizationσ, the sum ofk and σ is
therefore a sum over a complete set of modes of the radiation
field.

The creation operatorâkσ
q and annihilation operatorâkσ are

defined by12

where we use the Dirac notation|‚‚‚, nkσ,‚‚‚〉 to describe a many-

photon radiation field withnkσ photons in the modek and
polarizationσ.

The number operatorN̂kσ satisfies the eigenvalue equation

The operatorĤrad, defined in eq 36, can thus be considered
the Hamiltonian of the radiation field and obeys the eigenvalue
equation

The interaction HamiltonianĤint can be written as

whereµ̂ is the electric dipole moment formed by the charges
making up the atom-diatom system, andEB is the electric field
strength of the laser field. The main derivation of the interaction
Hamiltonian is developed in section II.

The electric dipole momentµ̂ can be separated into two terms

The first termµ̂BC is a function of the internuclear distanceR,
and it represents the electric dipole moment of the isolated
diatom BC. The second termµ̂A,BC

ind , caused by the presence of
the collision particle (atom A) which distorts the charge
distribution of the atom-diatom system, is called the induced
electric dipole moment of the system. The termµ̂A,BC

int is a
function of the translational distancer, the internuclear distance
R, and the angleθ betweenrb andRB. For simplicity, we assume
the collision particle and the diatom have small polarizabilities;
they can only slightly distort the charge distribution of the whole
system, and therefore the induced electric dipole moment,
µ̂A,BC

ind , is much weaker than the electric dipole momentµ̂BC.
Under this assumption, the induced dipole momentµ̂A,BC

ind can
be neglected, andĤint becomes

The electric field strengthEB, which interacts with the collision
system (in spherical coordinates), is given by13

with

whereêkσ is the unit vector in the modek and polarizationσ,
and V is the quantization volume of the laser field. For the
electric dipole interaction, the electric field strength can be
written as

Equation 46 is obtained by applying the EDA.
For simplicity, we assume the laser field contains only

one frequencyω (single mode) with polarizationσ. Be-
cause the collision system now interacts with the laser field,
the wave functions of the system are then a sum of direct

N̂kσ|‚‚‚, nkσ,‚‚‚〉 ) nkσ|‚‚‚, nkσ,‚‚‚〉 (39)

Ĥrad|‚‚‚, nkσ,‚‚‚〉 ) ∑
k,σ

pωknkσ|‚‚‚, nkσ,‚‚‚〉 (40)

Ĥint ) -µ̂·EB (41)

µ̂ ) µ̂BC(R) + µ̂A,BC
ind (r,R,θ) (42)

Ĥint ≈ -µ̂BC·EB (43)

EB ) ∑
k,σ

E0(êkσakσe
ik·r - êkσ

/ akσ
+ e-ik·r) (44)

E0 ) i x2πpωk

V
(45)

EB ≈ ∑
k,σ

E0(êkσakσ - êkσ
/ akσ

+ ) (46)

Ĥ0 ) - p2

2µ
3r

2 + ĤBC + V(r,R,θ)

) - p2

2µ (1r ∂
2

∂r2
r) + LB2

2µr2
+ ĤBC + V(r,R,θ) (30)

LB2 ) -p2 [ 1
sin θr

∂

∂θr
(sin θr

∂

∂θr
) + 1

sin2 θr

∂
2

∂φ
2
r
] (31)

µ )
mA(mB + mC)

mA + mB + mC
(32)

ĤBC ) - p2

2µBC
3R

2 + VBC(R)

)
p2

2µBC
(1

R

∂
2

∂R2
R) +

JB 2

2µBCR2
+ VBC(R) (33)

µBC )
mBmC

mB + mC
(34)

(ĤBC - εjν)øjν(R)Yjmj
(R̂) ) 0 (35)

Ĥrad ) ∑
k,σ

pωkN̂kσ ) ∑
k,σ

pωkâkσ
q âkσ (36)

âkσ
q |‚‚‚, nkσ,‚‚‚〉 ) xnkσ + 1| ‚‚‚, nkσ + 1,‚‚‚〉 (37)

âkσ|‚‚‚, nkσ,‚‚‚〉 ) xnkσ|‚‚‚, nkσ - 1,‚‚‚〉, (38)
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products including the photon state|nσ〉

whereJ is the total angular momentum,M is the eigenvalue of
the JBz component, andG is the expansion coefficient.

The time-independent Schro¨dinger equation for the collision
system in a laser field is

whereĤ is the total Hamiltonian defined in eq 28 andE is the
total energy of the whole system. The coupled-channel equations
in a laser field (using the Floquet Hamiltonian14) are then given
as

The matrix elements of the relative kinetic energy,ĤBC and
V(r,R,θ) are

The matrix element of the radiation Hamiltonian is

The matrix elements of the interaction Hamiltonian can be
written as

whereµbBC is the electric dipole moment of the diatom BC and
EB is the electric field strength.

Combining all the derivations about the matrix elements
above, we obtain

where

IV. Calculation Results

In this section, we consider an S-state, structureless argon
(Ar) atom colliding with a Σ-state carbon monoxide (CO)
molecule in the presence of an intense laser field. On the basis
of the theory developed in previous sections, we are interested
in the collision leading to the rotation-vibration transitions. The
electronic transitions are not accessible and therefore not
included. Note that the energy associated with rotational
transitions is usually less than the energy associated with
vibrational transitions which is usually less than the energy
associated with electronic transitions. As a consequence, a
vibrational transition is normally accompanied by rotation
transitions. In this Ar+ CO collision problem, we assume the
relative kinetic energy is low (e.g.,e500 cm-1) so that no
vibrational transition for CO can be observed in the absence of
the laser field, that is, we can only excite the rotational energy
levels but not the vibrational energy levels of CO in the absence
of the laser field. When the collision system Ar+ CO is in the
laser field, the carbon monoxide may collide with the laser
photon and absorb the photon energy. Therefore, we can adjust
the laser frequency, that is, the photon energy, so that the
vibrational transitions for CO will be accessible. We define the
energy defect∆ as follows: by adjusting the laser frequency
so that when the energy level for theν ) 0, j ) 0 state which
has absorbed one photon (N ) n - 1) has the same energy as
the levelν ) 1, j ) 0 with no photon absorbed (N ) n), we
say the energy defect is zero. If the energy level for theν ) 0,
j ) 0 (N ) n - 1) state is 4 cm-1 below the levelν ) 1, j )
0 (N ) n), then the energy defect is-4 cm-1. The calculated
values of the rotation-vibration energy levels of carbon
monoxide are given in Table 1. From Table 1, we know the
energy defect will be zero if the photon energy is 2200.85966
cm-1.

We shall apply the SF theory, which we developed in section
IIIA, to compute the rotation-vibration transition probabilities
as a function of the energy defect. The transition probability
Pif between the initial state|i〉 and the final state|f〉 is related to
the square ofS-matrix element

The S-matrix is related to theK -matrix by

ΨJMjl νnσ )

∑
J′′M′′j ′′l ′′ν′′n′′σ

r-1GJ′′M′′j ′′l ′′ν′′nσ

JMjl νnσ (r)|j′′ν′′〉|J′′M′′j′′l ′′〉|n′′σ〉 (47)

(Ĥ - E)ΨJMjlνnσ ) 0 (48)

∑
J′′M′′j′′l′′ν′′n′′σ

〈n′σ |〈J′M′j′l′|〈j′ν′|Ĥ - E|j′′ν′′〉|J′′M′′j′′l′′〉| n′′σ〉 ×

r-1GJ′′M′′j′′l′′ν′′n′′σ
JMjlνnσ (r) ) 0 (49)

〈n′σ |〈J′M′j′l′|〈j′ν′| - p2

2µ (1r ∂
2

∂r2
r) +

LB2

2µr2 |j′′ν′′〉|J′′M′′j′′l′′〉| n′′σ〉 )

δn′σn′′σ
δJ′J′′δM′M′′δj′j′′δl′l′′δν′ν′′ [- p2

2µ (1r ∂
2

∂r2
r) +

l′′(l′′ + 1)p2

2µr2 ]
(50)

〈n′σ |〈J′M′j′l′|〈j′ν′|ĤBC|j′′ν′′〉|J′′M′′j′′l′′〉| n′′σ〉 )
δn′σn′′σ

δJ′J′′δM′M′′δj′j′′δl′l′′δν′ν′′εj′′ν′′ (51)

〈n′σ |〈J′M′j′l′|〈j′ν′|V(r,R,θ)|j′′ν′′〉|J′′M′′j′′l′′〉| n′′σ〉 )
δn′σn′′σ

〈J′M′j′l′|〈j′ν′|V(r,R,θ)|j′′ν′′〉|J′′M′′j′′l′′〉 (52)

〈n′σ |〈J′M′j′l′|〈j′ν′|Ĥrad|j′′ν′〉|J′M′j′l′〉| n′σ〉 )
δn′σn′σ

δJ′J′′δM′M′′δj′j′′δl′l′′δν′ν′′pωnσ (53)

〈n′σ |〈J′M′j′l ′|〈j′ν′| - µbBC·E|j′′ν′′〉|J′′M′′j′′l ′′〉| n′′σ〉 )

-E0 xn′′σ δn′σ,n′′σ-1〈J′M′j′l ′|〈j′ν′|µbBC·êσ|j′′ν′′〉|J′′M′′j′′l ′′〉 +

E0 xn′′σ + 1 δnσ′,n′′σ+1〈J′M′j′l ′|〈j′ν′|µbBC·êσ
/|j′′ν′′〉|J′′M′′j′′l ′′〉

(54)

[ d2

dr2
+ kj′ν′n′σ

2 -
l′(l′ + 1)

r2 ] GJ′M′j′l ′ν′n′σ
JMjl νnσ (r) )

2µ

p2
∑

J′′M′′j′′l ′′ν′′
{〈J′M′j′l ′|〈j′ν′|V(r,R,θ)|j′′ν′′〉|

J′′M′′j′′l ′′〉GJ′′M′′j′′l ′′ν′′n′σ
JMjl νnσ (r) - E0 xn′σ + 1 [〈J′M′j′l ′|

〈j′ν′|µbBC·êσ|j′′ν′′〉|J′′M′′j′′l ′′〉]GJ′′M′′j′′l ′′ν′′nσp+1
JMjl νnσ (r) +

E0 xn′σ [〈J′M′j′l ′|〈j′ν′|µbBC·êσ
/|j′′ν′′〉|

J′′M′′j′′l ′′〉]GJ′′M′′j′′l ′′ν′′n′σ-1
JMjl νnσ (r)} (55)

kj′ν′n′σ
2 ≡ 2µ

p2
(E - εj′ν′ - pωn′σ) (56)

Pif ) |〈i|S|f〉|2 (57)

S ) (I + iK )(I - iK )-1 (58)
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where theK -matrix can be obtained by solving the coupled-
channel equations using the log derivative method.15

To solve the coupled-channel equations, we shall introduce
the dipole moment function of CO, the potential energy of CO,
and the intermolecular potential energy of Ar+ CO. The dipole
moment functionµCO(R) of carbon monoxide, which will be
used in computing the interaction Hamiltonian matrix, is given
as16

with

wherea (2.390439 Å-1) is the parameter of the equivalent Morse
oscillator and Re is the equilibrium position of CO. The
coefficients in eq 59 are listed in Table 2, and the units ofR
andµCO are angstroms and debye, respectively. Because atomic
units are used in solving the coupled-channel equations, we
provide the conversion factor used to convert angstrom and
debye units into atomic units, that is, 1 D) 0.39354113 au
and 1 Å ) 1.88972688 au. In atomic units, the equilibrium
position of CO is given as 2.132 au. The potential energy of
CO can be written as the power series form17

wherez) (R- Re)/Rand the potential energy is given in atomic
units. The numerical values ofB0 andbi are given in Table 3.
A detailed discussion on the potential energy of CO can be found
in the paper by Finlan and Simon.17 The intermolecular potential
energyV(r,R,θ) of Ar + CO has the form

wherePn(cosθ) values are the Legendre polynomials. The Ar
+ CO potential energy has been fully developed and discussed
by Parker and Pack.18

Given the atomic masses of Ar (39.96238 au), C (12.0 au),
and O (15.99491 au), the laser intensityI, the energy defect∆,
the relative energyE, the field-free total angular momentumJ
) 0,1, the vibrational quantum numberν ) 0,1, and the
integration range fromrmin ) 0.65 au tormax ) 90.0 au, the
coupled-channel equations are then solved until convergence
of the transition probability is obtained within 1%. For the Ar
+ CO collision system, we also need allj values up to 10 to
obtain convergence.

Our calculations show that the rotation-vibration transition
probability of CO increases linearly with the laser intensity up
to 1.0× 109 watt/cm2 (Table 4). We will use this laser intensity
to calculate transition probabilities of CO fromν ) 0 and
selected initial rotational states toν ) 1 as a function of energy
defect. Figure 1 shows the transition probabilities fromν ) 0,
j ) 0 to ν ) 1 for relative energyE ) 0.01514 au. Note that
the solid curve in Figure 1 represents the summation of the
transition probabilities over the final rotational states. The
transition probabilities fromν ) 0, j ) 0 to all final rotational
states are also shown in Figure 1 with different line types. As
expected, the solid curve shows a large transition probability
at ∆ ) +4 cm-1. This corresponds to the dipole-allowed
transition for CO fromν ) 0, j ) 0 to ν ) 1, j ) 1; the laser
frequency is almost in resonance with this dipole-allowed
transition. The energy defect for the exact resonance of CO is
given in Table 5. Note that theν ) 1, j ) 1 level may have a
rotational transition toν ) 1, j ) 0 or a rotational excitation to
a higher rotational level (e.g.,ν ) 1, j ) 2), but these transition
probabilities are smaller than that fromν ) 0, j ) 0 to ν ) 1,
j ) 1 as shown in Figure 1. We also notice that there are

TABLE 1: Rotation -Vibration Energy of CO

ν (vibration) j (rotation) energy (au) energy (1/cm)

0 0 0.0049486339 1086.09955
0 1 0.0049661784 1089.95011
0 2 0.0050012667 1097.65110
0 3 0.0050538975 1109.20223
0 4 0.0051240690 1124.60310
1 0 0.0149764889 3286.95921
1 1 0.0149937781 3290.75374
1 2 0.0150283561 3298.34274
1 3 0.0150802222 3309.72605
1 4 0.0151493756 3324.90345

TABLE 2: Coefficients for the Dipole Moment Function of
CO

m0 ) -0.1212 B ) 0.8628
C ) -0.010087 a1 ) -1.2748
a2 ) 6.9394 a3 ) -8.2501

TABLE 3: Molecular Constants for the Potential Energy of
CO

B0 ) 2.776904753 b1 ) -0.69730961
b2 ) -0.58547656 b3 ) -0.13627322
b4 ) 0.36833499

µCO(R) ) µCO(y) ) m0 + a1By/(1 - By) - a2 ln(1 - By) +
a3(1 - By)ln(1 - By)/By + a3 + Cy(1 - y) (59)

y ) 1 - exp[-a(R - Re)] (60)

VCO(R) ) VCO(z) ≈ B0z
2(1 + b1z + b2z

2 + b3z
2 + b4z

2) (61)

V(r,R,θ) ) ∑
n

Vn(r,R)Pn(cosθ) )

∑
nm

Vhnm(r)(R - Re)
mPn(cosθ) (62)

TABLE 4: Transition Probability of CO with E ) 0.01514
au and ∆ ) +4 (1/cm) at Different Laser Intensities

105 (W/cm2) 107 (W/cm2) 109 (W/cm2)

00 f 1 80.784× 10-6 80.693× 10-4 62.051× 10-2

01 f 1 8.180× 10-6 8.174× 10-4 7.262× 10-2

02 f 1 7.661× 10-6 7.658× 10-4 6.448× 10-2

03 f 1 4.809× 10-6 4.502× 10-4 4.283× 10-2

TABLE 5: Energy Defect (cm-1) for the Exact Resonance of
COa

νj 00 01 02 03 04

10 0.0 -3.85056 -11.55155 -23.10268 -38.50355
11 3.79453 -0.05603 -7.75702 -19.30815 -34.70902
12 11.38353 7.53297 -0.16802 -11.71915 -27.12002
13 22.76684 18.91628 11.21529 -0.33584 -15.73671
14 37.94424 34.09368 26.39269 14.84156 -0.55931

a Dipole-allowed transitions are italicized.

Figure 1. Ar + CO (00f 1), E ) 0.01514 au.
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significant transition probabilities about∆ ) -8, -4, and+8
cm-1 in Figure 1, which is because the rotational states of CO
can be excited by the collision partner Ar. For example, the
transition probability at∆ ) -4 cm-1 can be thought of as a
two-step process, a rotational excitation fromν ) 0, j ) 0 to ν
) 0, j ) 1 and then a photon absorption to energy defect∆ )
-4 cm-1. This corresponds to the dipole-allowed transition from
ν ) 0, j ) 1 to ν ) 1, j ) 0. Without the collision partner Ar,
we cannot produce this transition and the transition probability
should be zero. Likewise, without the laser field, this transition
is impossible.

Figure 2 shows the transition probabilities fromν ) 0, j )
1 to ν ) 1. Again, the solid curve represents the summation of
the transition probability over the final rotational states. The
transition probabilities fromν ) 0, j ) 1 to all final rotational
states are also shown in Figure 2 with different line types. We
notice that there are two peaks (large transition probabilities)
of the solid curve in Figure 2. The first peak is at∆ ) +8
cm-1, which corresponds to the dipole-allowed transition from
ν ) 0, j ) 1 to ν ) 1, j ) 2. The second peak is at∆ ) -4
cm-1, which corresponds to the dipole-allowed transition from
ν ) 0, j ) 1 toν ) 1, j ) 0. We notice that there is a significant
transition probability about∆ ) +4 cm-1. This corresponds to
a two-step process, first a rotational transition fromν ) 0, j )
1 to ν ) 0, j ) 0, then a photon absorption to energy defect∆
) +4 cm-1. Again, without the collision partner Ar and the
laser field, this two-step process cannot be generated and its
transition probability should be zero.

For the transition probabilities fromν ) 0, j ) 2 to ν ) 1,
there is a large transition probability at∆ ) -8 cm-1 as shown
in Figure 3. This corresponds to the dipole-allowed transition
from ν ) 0, j ) 2 to ν ) 1, j ) 1. Note that though theν ) 1,
j ) 1 level may have a rotational transition toν ) 1, j ) 0 or
a rotational excitation to higher rotational level, these transition
probabilities are smaller than that fromν ) 0, j ) 2 to ν ) 1,
j ) 1. We also notice that there are significant transition
probabilities about∆ ) -4, +4, and+8 cm-1 in Figure 3,
which represent multistep processes to final statesν ) 1, j )
0; ν ) 1, j ) 1; andν ) 1, j ) 2, respectively. Note that the
transition probabilities fromν ) 0, j ) 2 to the specific
rotational states are also shown in Figure 3 with different line
types.

In Figure 4, the solid curve is the transition probability from
ν ) 0, j ) 3 to ν ) 1. Examining the solid curve, we would
expect a large transition probability at∆ ) -12 cm-1, which
corresponds to the dipole-allowed transition fromν ) 0, j ) 3
to ν ) 1, j ) 2. There are also significant transition probabilities

at ∆ ) -4, +4, and +8 cm-1, which represent multistep
processes to final statesν ) 1, j ) 0; ν ) 1, j ) 1; andν ) 1,
j ) 2 as shown in Figure 4.

If we keep the same laser intensity (1.0× 109 watt/cm2) but
lower the relative energyE to 0.01508 au, which only opens
the final rotational states up toj ) 2, we can observe the
transition probability fromν ) 0 with some initial rotational
states to theν ) 1 states as we did in theE ) 0.01514 au case.
Figure 5 shows the transition probabilities fromν ) 0, j ) 0 to
ν ) 1. Here, the solid curve is the summation of the transition
probabilities over the final rotational states. The transition
probabilities to the specific rotational states are also shown in
Figure 5 with different line types. As for the solid curve, there

Figure 2. Ar + CO (01f 1), E ) 0.01514 au. Figure 3. Ar + CO (02f 1), E ) 0.01514 au.

Figure 4. Ar + CO (03f 1), E ) 0.01514 au.

Figure 5. Ar + CO (00f 1), E ) 0.01508 au.
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is a large transition probability at∆ ) +4 cm-1 as expected.
This corresponds to the dipole-allowed transition fromν ) 0,
j ) 0 to ν ) 1, j ) 1. With the collision partner Ar and the
laser field, we also obtain significant transition probabilities
about∆ ) -8, -4, and+8 cm-1. These transition probabilities
correspond to the multistep processes fromν ) 0, j ) 0 to ν )
1, j ) 1; ν ) 1, j ) 0; andν ) 1, j ) 2. Figure 6 shows the
transition probabilities fromν ) 0, j ) 1 to ν ) 1. As we look
at the solid curve in the figure, we find two large transition
probabilities as we found inE ) 0.01514 au. The first one is at
∆ ) +8 cm-1, which corresponds to the dipole-allowed
transition fromν ) 0, j ) 1 to ν ) 1, j ) 2. The second one
is at ∆ ) -4 cm-1, which corresponds to the dipole-allowed
transition fromν ) 0, j ) 1 to ν ) 1, j ) 0. Note that the
transition probabilities fromν ) 0, j ) 1 to the specific
rotational states are shown in Figure 6 with different line types.
For the transition probabilities fromν ) 0, j ) 2 to ν ) 1, we
would expect a large transition probability at∆ ) -8 cm-1 as
shown in Figure 7. This corresponds to the dipole-allowed
transition fromν ) 0, j ) 2 to ν ) 1, j ) 1. Figure 7 includes
the transition probabilities to the specific rotational states out
of ν ) 0, j ) 2.

We now reduce the relative energy to 0.01502 au, which will
only open the final rotational states up toj ) 1. Therefore, we
would not expect the dipole-allowed transition fromν ) 0, j )
1 to ν ) 1, j ) 2. Let’s first look at the transition probabilities
from ν ) 0, j ) 0 to ν ) 1 as shown in Figure 8. The solid
curve again represents a summation of the transition probabilities
over the final rotational states. Again, we obtain a large transition
probability at energy defect∆ ) +4 cm-1, which corresponds

to the dipole-allowed transition fromν ) 0, j ) 0 to ν ) 1, j
) 1. Note that the levelν ) 1, j ) 1 may have a rotational
transition toν ) 1, j ) 0, but this transition probability is much
smaller than that fromν ) 0, j ) 0 to ν ) 1, j ) 1 as shown
in Figure 8. Figure 9 shows the transition probabilities fromν
) 0, j ) 1 to ν ) 1. The large transition probability at∆ ) -4
cm-1 of the solid curve corresponds to the dipole-allowed
transition fromν ) 0, j ) 1 to ν ) 1, j ) 0. The levelν ) 1,
j ) 0 may then have a rotational excitation toν ) 1, j ) 1.
This transition is much smaller than that fromν ) 0, j ) 1 to
ν ) 1, j ) 0 as shown in Figure 9.

V. Conclusion

In this paper, we have developed the general theory for an
atom-diatom system interacting with a laser field. The multi-
polar gauge is applied in order to obtain gauge invariance. This
theory is valid for both strong laser fields and weak laser fields
and can be directly applied to the weak laser field case, where
we use the long wavelength approximation to simplify the
Hamiltonian. In the future, this theory will be used to study
weak laser field coherent control of an atom-diatom system.
For the strong laser field, we quantized the laser field and
combined the laser Hamiltonian with the field-free Hamiltonian.
A general theory was developed for both adiabatic and non-
adiabatic interactions.

Our computer code has been examined with the theory for
the strong laser field case. As an example, we studied the
collisions of Ar with CO in the presence of an intense laser
field. We presented rotation-vibration transition probabilities

Figure 6. Ar + CO (01f 1), E ) 0.01508 au.

Figure 7. Ar + CO (02f 1), E ) 0.01508 au.

Figure 8. Ar + CO (00f 1), E ) 0.01502 au.

Figure 9. Ar + CO (01f 1), E ) 0.01502 au.

Laser Interaction Theory in Atom-Diatom Systems J. Phys. Chem. A, Vol. 110, No. 16, 20065511



as a function of the energy defect. In the presence of a laser
field, our results indicate that there are significant transition
probabilities between certain initial and final rovibrational
energy levels of CO, which have zero transition probabilities
in the absence of a laser field. Presently, our theory is restricted
to a Σ-state diatomic molecule, that is, there is no electronic
angular momentum about its internuclear axis and dipole-
allowed transitions do not include the so-called Q-branch
transitions (∆j ) 0). However, the theory can be easily
generalized to include non-Σ-state diatomic molecules. Finally,
we point out that although the extra couplings increase the
complexity of the collision, they provide a much richer range
of phenomena than that in the absence of the laser field. The
results turned out to be sound and reasonable. It ensures us that
the scattering codes and the theory are working well. The theory
we have developed shall help us in understanding the dynamics
of atom-diatom collisions in the presence of a laser field.

This paper is the first in a series studying the atom-diatom
system with a laser field. The theory developed herein will be
used to perform coherent control studies of an atom-diatom
system. Both of the adiabatic and the nonadiabatic cases will
be studied to test the effect of conical intersections in collision
dynamics.
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