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This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we
choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and
nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we
present the study of rovibrational energy transfer intACO collisions in the presence of an intense laser
field.

I. Introduction similar to those used by Brumer and Shapiro to control collinear
chemical reaction.In these methods, coherent control of a

of an electromagnetic field is important to both experimentalists b|molecular chI|S|on is accomplished by_photqassouatlng the
and theorists. We are particularly interested in molecular mlxgd atom-diatom _system_ to_ form a triatomic complex of
rearrangement dynamics and quantum coherent control Ofe.xcned states. The first excitation step, the pump phase,'l'Jsesa
bimolecular chemical reactions in the presence of an electro- Picosecond laser pulse to create a coherent superposition of
magnetic field. excited rovibrational states of the triatomic complex. The excited

As discussed by Light and co-workers (ref 1 and references Wave packet created by the pump pulse then evolves for a
therein): variable time. A second laser pulse, the dump pulse, stimulates

Intense laser radiation can affect kinetic processes in gas@ transition to the ground state that preferentially favors a
mixtures in two distinct ways: It can alter the Boltzmann Particular reactive or nonreactive channel. The experimental
population of the internal states of the atoms and molecules in cOntrol parameters are the relative detuning of the pump pulse
the system, thus inducing kinetics of excited species, and in from the superposed excited state levels and the time delay
some circumstances, it can alter the dynamics of the collision between the pump and dump pulses. Brumer and Shapiro
events themselves even in the absence of prior populationshowed that, theoretically, nearly 100% control may be obtained
changes. The theoretical approaches to these two classes ofising their collinear model for the H- HD bimolecular
processes are quite different, the first requiring detailed rate collision. They use the shape of the pulses (the excitation center-
constants or cross sections for the excited initial states and theline energy and pulse width) to control the dynamics leading
second requiring that the laser field be included in the dynamics to the breaking of one bond and the formation of another.
of the collision process itself. The spectrum of different collision  This paper is the first of a series showing the effects of laser
processes which could be influenced by the laser field is as broadfields on atom-diatom molecular collisions. Many researchers
as the collision process itself, including collision induced have shown great interest in atemradiation interactions, and
absorption, laser induced collisional energy transfer, ionization, different derivations have been established for different applied
and chemical reaction. gauges. In 1979, Kobe advocated the use of the multipolar gauge

This is because the collision system in the presence of a laseron the basis of gauge invariantéHowever, the general theory
field has a much richer range of phenomena than in the absenceyas not established specifically for an atediatom system
of the laser field. When the laser field is included, photons can nteracting with a laser field. What is more, nonadiabatic
be absorbed or emitted during the collision process due to collisions have interested many researchers and will be important
additionql photon-system'couplings. If th.e initial and finql states for some systems. It will be a challenge to include the
are not in resonance with the laser field, then the induced ponadiabatic terms in the atermadiation interaction. We herein
transitions must be asso_mqted with the short-range interaction.provide the theory approach including nonadiabatic effects in
The dynamics of the colliding system are thus greatly affected tpe atom-diatom collision system with a laser field.

by the presence of the laser field, and a full guantum mechanical In section 11 of this paper, we develop the general theory for

treatment of the problem should be used. George and collabora- . - - .
tors have shown the necessity of this approféh. using the multipolar gauge to deal with the ateradiation

. . . interaction (ARI). Adiabatic and nonadiabatic cases will both
Another important example is the coherent control of bi- e e
h - . be developed. If the electromagnetic field is intense, then one
molecular reactions, which can be implemented by methods . ) o
must also quantize the photon field. An application of the theory
T Part of the special issue “John C. Light Festschrift". to the strong laser field case is included in section Ill. The
* To whom correspondence should be addressed. E-mail: xuanli@ou.edu.particular application studied in the current paper is that of
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The study of dynamic molecular processes in the presence
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rovibrational energy transfer in At CO collisions in the Using the multipolar gauge, we can express_the vector
presence of an intense laser field. Subsequent publications willpotential and the scalar potential in terms of EhandB fields
treat reactive molecular collisions in the presence of an

electromagnetic field. Results for this system will be presented AM(T,I) =T x fl UB(UT 1) du 7
in section 1V, and concluding remarks will be provided in 0
section V. 1=

pu(T)=—T+ [ E(UT,H) du (8)

Il. General Theory N Q
and we know that botlE and B must be gauge invariant.

A multipole expansion of the potentials in eq 7 and eq 8 can
be made by expanding the fields about the origin (center-of-
mass of the system). Here, we employ the long wavelength
approximation (LWA), where only the first few terms of the

A. ARI in a Three-Atom System. The main problem we
are dealing with is the behavior of an atewiatom collision
system in a laser field. Our derivation of this problem begins
with the time-dependent Schdimger equation (TDSE)

Arr iy O expansion need to be included because the laser wavelength is
HY = 'hﬁlp @) much longer than the scale of the atom or diatom
where the full Hamiltonian is Ay(FH) =— %? « B(Of) + -+ ©)

A

Nofoq -
A= 3 o [P~ QAT+ 4Ty +
Vool Ty (2)

The sum runs over both the nuclei and the electr@gs=
—ihVg, Vo is the usual interparticle Coulombic potential energy
for the whole systemA is the vector potential is the external
scalar potentialg, is —e for an electron and+-Z,e for nuclei,
andm, are the masses of the particles.

Here, we want to specify that(f,,t) is the scalar potential
for the external field but not the total scalar potential for the
molecular system and the field. The total scalar potential is

- 1
ou(TH=-TEO0HN -3 Y ST Ol + -+ (10)
T T

where the definition of the derivative i§ = d/drj, andr;
values are the Cartesian components of the vactor

In this expansion, the first term ity is the magnetic dipole
moment, the first term iy is the electric dipole moment, and
the second term ipy is the electric quadrupole term. It should
be specified that the electric quadrupole and magnetic dipole
terms are of the same order in their contribution to the
electromagnetic field By neglecting these two terms, we rewrite
the equations foAy and¢y as

N N -
¢total = z ‘ptotal(—fwt) = Z [‘p(?a’t) + ¢sys(?out)] (3) AM(T’t) ~0 (11)

dy(T 1) ~ —T-E(0}) (12)
where the interparticle Coulombic potential energyis= ZQ‘
dupsydTo,t), Which depends on the scalar potential of the atom  This approximation is called the electric dipole approximation

diatom system. (EDA).

To simplify the problem, we will partition the Hamiltonian. Here, we need to specify that the application of the LWA
The total Hamiltonian is the sum of the molecular Hamiltonian and EDA is valid only in the following situation: the subsystem,
(field-free HamiltonianHo and the interaction Hamiltoniaiin which would be excited by the laser field, should be confined

A A ~ in a region that is much smaller than the laser wavelength. For
H=H,+ Hy (4)

a larger subsystem, we argue that the electric quadrupole and
magnetic dipole terms should be taken into consideration. In
this case of the diatom subsystem, this condition is met and the
two approximations are valid.

Therefore, with the LWA and the EDA, the Hamiltonian
becomes

where theHo and Hin, terms are chosen differently based on
the associated gauges, drglalways contains the interparticle
CoulombicVy term.

B. Multipolar Gauge in ARI Without Nonadiabatic
Coupling. We use the multipolar gauge to simplify the full
Hamiltonian and so that the Hamiltonian will have the proper

“ 1 - N _
gauge invariancé.n this subsection, the derivation is limited H= z —p,2+ V,— rE(t) = Hy — rE()  (13)
to an adiabatic case, and we will use a Boe@®ppenheimer T 2m,
expansion to include the nonadiabatic terms in the next
subsection. where
The multipolar gauge is defined as follotvs
- = T 14

AT =0 ©) A=2 % o
with a boundary condition for the gauge transformation function is the dipole moment operator. The time-independent part of
am(F.t) at the origin the HamiltonianHo, is

908 = 2 (0 =0 (6) : Lo
D= 5m Ho=3 ——pS+ Vo (15)
T 2m,

where the subscript “M” denotes the multipolar gauge. In eqs
5 and 6, we neglect the subscriptfor simplicity. Since the interaction part in the Hamiltonian under the multipolar
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gauge transformation has aterm, it is said that the multipolar
gauge has a “length form”.

The term containing the dipole operator is responsible for
coupling the states of the system, and the coupling matrix
element for the multipolar gauge can be written as

V,, =K H, IO
(K| x| 10

(16)
where the indicesk” and 1" represent different states of the
whole system.

C. Multipolar Gauge in ARI with Nonadiabatic Coupling.

It will be necessary to include nonadiabatic terms for systems
that have conical intersections in the relevant energy states. In

this situation, the full Hamiltonian in eq 2 can be partitioned
into three parts

H=H,+H.+V, (17)

where

L I -

H(R =3 ﬁ[pa—qu(th)] +a0(R )y (18)
and

L= & _

H(R = lﬁ [Bo — AT 0] + qa¢(w)} (19)

The symbol “n” denotes nuclei, and the symbol “e” denotes
electrons. Herey in eq 18 runs over all the nuclei, andin eq

19 runs over all the electrons. THeterms are the nuclear
coordinates, and thieterms are the electronic coordinates.

If we introduce the basi®(r;R) (the eigenfunctions of the
electronic Hamiltonian) and use a Ber@ppenheimer expan-
sion, then we will end up with the following Hamiltonian after
integration over the electronic space “

A(R); = [;|H, ;T + [@|H DT + [D;|Vo/®[F  (20)

The first part of the full Hamiltonian in the nuclear spad®’*
is

[@|H,|PLF =
1A — h.]2 -
z [_ [._fo' - qu(Rout) + _F] + qa¢(th)] (21)
T [ 2m, i i

where the nonadiabatic terfis

Fy = [@,|V|®,F (22)
For simplicity, the sum is implied, and we will rewrite eq 21
as

W AThe s hel2 o
[@H, PO = m i—V — gARY) + i—F +gp(Rt) (23)

Li et al.
SN A (N T RS
HM(R)—Zm’iVR+ iF] AE+V,
h? =2 .z
=—§n[V§+ FI*—aE+V, (24)
wherey is the dipole operator and
V, = [@|H | PH [@|V,| PO (25)

If we choose to let the molecular Hamiltonian be

hZ

—om Ve tFIP 4V,

H,= (26)

then the coupling matrix element for the multipolar gauge is

V= — RIEa|l0 27)

We notice here that the interaction Hamiltonian has the same
form as in the adiabatic case. However, the basis functions are
different because the different basis-determining Hamiltonian

now includes the nonadiabatic ters

IIl. Atom —Diatom Collisions in a Laser Field

In this section, we apply the theory of section Il to a problem
of an S-state, structureless atom colliding witB-atate diatomic
molecule in the presence of an intense laser field. We want to
specify that we will not consider the nonadiabatic terms in this
study for now; we will limit our focus to the adiabatic case.
This limitation is valid for the collision energies and laser
frequency used herein.

We use the center-of-mass of the atom-{Aljatom (BC) as
our coordinate origin, and we ignore the center-of-mass motion.
The position vectorg andR are measured from the center-of-
mass of the diatom BC to the atom A and from the atom B to
the atom C, respectively. The angle betwéamdR is denoted
by 0. In the space-fixed (SF) theory, the anglés,¢) and
(Or,9r) define the directions of the position vectarand R,
wheref and¢ are the polar and azimuthal angles, respectively.

A. SF Theory. First, let us discuss the Hamiltonian of the
atom—diatom collision in the presence of a strong laser field
in an SF set of coordinates. The body-fixed (BF) formulation
has been defined elsewhéfeThe total HamiltoniarH of the
collision system in the presence of a laser field with a total
energyE satisfies the time-independent Satlirgger equation

HW= E|wO (28)
where the Dirac notatiof’ Orepresents the wave function of
the whole system. The total Hamiltoniat of the system
includes three terms
int (29)
The first term, the field-free Hamiltoniaf, is the Hamiltonian
for the collision system in the absence of the laser field; the
second term, the radiation HamiltoniBip,g, is the Hamiltonian
for a radiation field; the last term, the radiative interaction

Notice that these operators are matrixes in the electronic stateHamiltonian Hiy;, is the Hamiltonian for the interaction of

basis.
If we apply the EDA to the multipolar gauge, thén= 0
and the total Hamiltonian in the nuclear spa&® Will be

the laser radiation field with the system. This derivation is
slightly different from that in section I, but the theory is
equivalent.
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In the center-of-mass coordinate system, the field-free Hamil- photon radiation field withny, photons in the modé and
tonianHp (in cgs units) can be written as polarizationo. .

, The number operatdry, satisfies the eigenvalue equation
h

A - 2 ) A
Hy=— Evr + Hgc + V(r,R0O) Ny e, Moo 0= N |+, NegyeeD (39)
R 1¥ L2 The operatof;aq defined in eq 36, can thus be considered
N Z (F 3_r2 r) + 2“ 2t HBC +V(rRO) (30) the Hamiltonian of the radiation field and obeys the eigenvalue
equation
with .
Hyad***s oo = Z haony |-+, N, 0 (40)
[2= _R2 10 a‘; (sme ﬁ)jt 1 31)
sin sir’ 6, 3¢ The interaction Hamiltoniaii,, can be written as
whereL is the orbital angular momentum operator of the atom I:|int = —[L-E (42)
A relative to the diatomic molecule B, is the intermolecular
potential energyy is the atom-diatom reduced mass wherej is the electric dipole moment formed by the charges
making up the atomdiatom system, anH is the electric field
_ my(mg + mg) strength of the laser field. The main derivation of the interaction
Tm,+mgt+me (32) Hamiltonian is developed in section II.
The electric dipole momelit can be separated into two terms
andHgc is the Hamiltonian of the isolated diatom BC. In the ~ind
center-of-mass coordinate system of the diatomic molecule, the it = itpc(R) + itppc(riR,6) (42)

HamiltonianHgc can be written as ) o ) ) )
The first termiigc is a function of the internuclear distanBg

. K2 5 and it represents the electric dipole moment of the isolated
Hge = — 2une VR + Vec(R) diatom BC. The second terp{%, caused by the presence of
BC the collision particle (atom A) which distorts the charge
R2 [1 &2 }/2 distribution of the atomrdiatom system, is called the induced
- + V(R (33) electric dipole moment of the system. The te}u’;‘jt sc IS a
ZMBC RoR? Zusc function of the translational distancethe internuclear distance

R, and the angl® betweerr andR. For simplicity, we assume
where / is the rotational angular momentum operator of the the collision particle and the diatom have small polarizabilities;

vibrating rotating diatomic molecule BC/gc is the intra- they can only slightly distort the charge distribution of the whole
molecular potential energy of diatom BC, amgt is the reduced system, and therefore the induced electric dipole moment,
mass of diatom BC y',i"éc, is much weaker than the electric dipole momgést.
Under this assumption, the induced dipole moméj’%c can
_ MM 34 be neglected, anfli,y becomes
Ugc = Mg + M (34) R R
Hine ~ —itgc’E (43)

The eigenfunctions oflgc must satisfy? o - ) o
The electric field strength, which interacts with the collision

(HBC — ij)ij(R)iji(ﬁ) =0 (35) system (in spherical coordinates), is giveridy
. g A ike
whereR = (6r¢r), 7jv is a vibrational wave functionifjy, is a E= Z Eo(&,a,€ <" — &ai,e ") (44)
spherical harmonic, and tlag are the rotatiorrvibration energy o
levels. with

The radiation Hamiltoniatq can be expressed as

. . 2mhw
Hiaa = Z hoyN, = Z hondy, A, (36) Eo=i NV : (45)

whereé, is the unit vector in the modk and polarization,

Since each mode of the radiation field is specified by the ' e .
wavevectork and the polarizatiow, the sum ofk and o is and V is the quantization volume of the laser field. For the

therefore a sum over a complete set of modes of the radiation€'ectric dipole interaction, the electric field strength can be
field. written as

The creation operat: A*g and annihilation operatdiy, are = " .
defined by? - E~ g Eo(Boai — & ac,) (46)

Bl e, Mg 0= N + 1] o,y + 100 (37) Equation 46 is obtained by applying the EDA.
For simplicity, we assume the laser field contains only
Ayl N D=\/n—kg| - 1,0 (38) one frequencyw (single mode) with polarizatiors. Be-
cause the collision system now interacts with the laser field,
where we use the Dirac notati¢n-, n,, --[10 describe amany-  the wave functions of the system are then a sum of direct
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products including the photon stae,[]

WJM]/VHU —
Z *1G:J]M'\5|/'lj/nu/ i n (r)“rr ”[I]\]”M”j”/”[l]n:;':l (47)
J'M7y '

wherelJ is the total angular momenturiv is the eigenvalue of
the J, component, and is the expansion coefficient.

The time-independent Schdimger equation for the collision
system in a laser field is

(- W™ =0 (48)

whereH is the total Hamiltonian defined in eq 28 ak&ds the

Li et al.

JMj/ —
G (1) =

v,

dr? r

2'14 U 1/ n II
2 i, (M TV VRO
I M

Idz , M+

JHMHJ'H/H@:]]M’\L/'IIH; . (r) EO /n + [D'M JI/I
mvllﬁBC.é “II n[ll]uMu ”/”q]GjM“J/ﬁ;??”V“nap{»l(r) +

Eo\/n_'o,[D'M'J'/'|mV'|ﬁBC. N HI:I]
I/ DGy —2()} (55)

total energy of the whole system. The coupled-channel equationswhere

in a laser field (using the Floquet Hamiltonidnare then given
as

Z ml |DMJ'/|mV|H E“I! Ill:ll]l!MI! Il/ mn”DX
[ Gy (1) =0 (49)

The matrix elements of the relative kinetic energisc and

V(r,R,0) are
56

HQ‘B'M']' /
= [
2 J”V”&I” Iy II/Ian

2ur?
72 (1 8 /(/’+1)h2
2u ar2r o

Ort v O3 Onena Oy Oy | =

(50)

mv |D!MJ1/|mV |HBC“H ”l:[U”M”j”/'D] n”O.D:

Brt 1,0 Ovina Oy 0,0y (51)

vyvnéjuvu

m' |D'MJ’/||:H’V |V(r- Re)“l' n I’MII'II/ID]nIID:
O IMZ| TV V(R O)) v TI"M"j"/' 0 (52)

The matrix element of the radiation Hamiltonian is

m |[LIM'j'/| [ﬂ’v’||:|rad|j"v'[lD'M'j'/[|] n [=
11, Oy Oy Oy 0,0, Hom, (53)

The matrix elements of the interaction Hamiltonian can be

written as
m! |D!MIJ‘I/I|[J‘!,V'| — ﬁBC'E“” HD:IJHMH I!/Hm nHD:
_EO\/_I(; n n 1DIMIJI/I||:H',V |‘[lBC.e “H HD:L]HMH Il/”l]_l_

EO \/nl(;—_’_ 6n0'1n"0+1D,M,j’/'|mvl|ﬁBCe IJ”V” [Il]”M”j”/”D
(54)

whereigc is the electric dipole moment of the diatom BC and

E is the electric field strength.

Combining all the derivations about the matrix elements

above, we obtain

Koy 2= 24 2“ L€~ ¢, — hom) (56)

V. Calculation Results

In this section, we consider an S-state, structureless argon
(Ar) atom colliding with aX-state carbon monoxide (CO)
molecule in the presence of an intense laser field. On the basis
of the theory developed in previous sections, we are interested
in the collision leading to the rotatiervibration transitions. The
electronic transitions are not accessible and therefore not
included. Note that the energy associated with rotational
transitions is usually less than the energy associated with
vibrational transitions which is usually less than the energy
associated with electronic transitions. As a consequence, a
vibrational transition is normally accompanied by rotation
transitions. In this At CO collision problem, we assume the
relative kinetic energy is low (e.gsx500 cmr?) so that no
vibrational transition for CO can be observed in the absence of
the laser field, that is, we can only excite the rotational energy
levels but not the vibrational energy levels of CO in the absence
of the laser field. When the collision system ArCO is in the
laser field, the carbon monoxide may collide with the laser
photon and absorb the photon energy. Therefore, we can adjust
the laser frequency, that is, the photon energy, so that the
vibrational transitions for CO will be accessible. We define the
energy defectA as follows: by adjusting the laser frequency
so that when the energy level for thhe= 0, ] = O state which
has absorbed one photoN &€ n — 1) has the same energy as
the levely = 1, ) = 0 with no photon absorbedN(= n), we
say the energy defect is zero. If the energy level fontke 0,

j =0 (N=n— 1) state is 4 cm! below the level = 1, =

0 (N = n), then the energy defect is4 cnr 1. The calculated
values of the rotationvibration energy levels of carbon
monoxide are given in Table 1. From Table 1, we know the
energy defect will be zero if the photon energy is 2200.85966
cm L,

We shall apply the SF theory, which we developed in section
IIIA, to compute the rotatiorrvibration transition probabilities
as a function of the energy defect. The transition probability
P between the initial statgCand the final stat¢f[is related to
the square of5-matrix element

= | DS (57)
The S-matrix is related to thé&-matrix by
S=(+iK)(I —iK)™? (58)
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TABLE 1: Rotation —Vibration Energy of CO TABLE 4: Transition Probability of CO with E = 0.01514
o : : au and A = +4 (1/cm) at Different Laser Intensities
v (vibration) j (rotation) energy (au) energy (1/cm)
V
0 0 0.0049486339  1086.09955 10° (Wier) 10 (Wjen?) 10 (Wren)
0 1 0.0049661784 1089.95011 00—1 80.784x 1076 80.693x 104 62.051x 102
0 2 0.0050012667 1097.65110 01—1 8.180x 1076 8.174x 10 7.262x 1072
0 3 0.0050538975 1109.20223 02—1 7.661x 1076 7.658x 104 6.448x 1072
0 4 0.0051240690 1124.60310 03—1 4.809x 1076 4.502x 104 4.283x 1072
1 0 0.0149764889 3286.95921
1 1 0.0149937781 3290.75374 TABLE 5: Energy Defect (cm™) for the Exact Resonance of
1 2 0.0150283561 3298.34274 co2
1 3 0.0150802222 3309.72605 :
1 4 0.0151493756 3324.90345 g 00 01 02 03 04
10 0.0 —3.85056 —11.55155 —23.10268 —38.50355
TABLE 2: Coefficients for the Dipole Moment Function of 11 3.79453 —0.05603 —7.75702 —19.30815 —34.70902
CcO 12 11.38353 7.53297 —0.16802 —11.71915 —27.12002
Mo = —0.1212 B— 08628 13 22.76684 18.91628 11.21529 —0.33584 —15.73671
C=-0.010087 a = —1.2748 14 37.94424  34.09368 26.39269 14.84156 —0.55931
a8 = 6.9394 ag = —8.2501 2 Dipole-allowed transitions are italicized.
TABLE 3: Molecular Constants for the Potential Energy of P, ' I '
co [ == 00->10
Bo = 2.776904753 by = —0.69730961 ] e :
b, = —0.58547656 b; = —0.13627322 > [ e 00-->13 ,’
by = 0.36833499 = 025 'l
=} L
. . . < ]
where theK-matrix can be obtained by solving the coupled- € o2} I
channel equations using the log derivative mettod. ﬂ; - !
To solve the coupled-channel equations, we shall introduce . 0.151- |
the dipole moment function of CO, the potential energy of CO, 2 - li
and the intermolecular potential energy of ArCO. The dipole E 0.1+ I
moment functionuco(R) of carbon monoxide, which will be - T /,._i'
used in computing the interaction Hamiltonian matrix, is given ~ 0.05— i ‘,{-.’-‘
ag® r ~ 2P
010 — L5\> ot '—-(t;ff..:.:/ .
Uco(R) = uco(y) = my + aBy/(1 — By) — &, In(1 — By) + Energy Defect
a(1 - BY)In(1 —By)/By +a;+ CY1~y) (59)  Figure 1. Ar + CO (00— 1), E = 0.01514 au.
with Given the atomic masses of Ar (39.96238 au), C (12.0 au),
1 oD and O (15.99491 au), the laser intendityhe energy defech,
y=1-exp[-aR-R)] (60) the relative energ¥, the field-free total angular momentuin

= 0,1, the vibrational quantum number = 0,1, and the
integration range fromyn = 0.65 au tormax = 90.0 au, the
coupled-channel equations are then solved until convergence
of the transition probability is obtained within 1%. For the Ar

+ CO collision system, we also need alalues up to 10 to
obtain convergence.

Our calculations show that the rotattewibration transition
probability of CO increases linearly with the laser intensity up
to 1.0 x 10° watt/cn? (Table 4). We will use this laser intensity
to calculate transition probabilities of CO from= 0 and
selected initial rotational statesto= 1 as a function of energy
defect. Figure 1 shows the transition probabilities frors O,

j = 0tov = 1 for relative energy\e = 0.01514 au. Note that

wherez = (R — R)/Rand the potential energy is given in atomic (he solid curve in Figure 1 represents the summation of the
units. The numerical values & andb; are given in Table 3. transition probabilities over the final rotational states. The

A detailed discussion on the potential energy of CO can be found fransition probabilities fromr = 0, j = 0 to all final rotational
in the paper by Finlan and SiméhThe intermolecular potential states are also shown in Figure 1 with different line types. As

wherea (2.390439 A?Y) is the parameter of the equivalent Morse
oscillator andRe is the equilibrium position of CO. The
coefficients in eq 59 are listed in Table 2, and the unit&of
anduco are angstroms and debye, respectively. Because atomic
units are used in solving the coupled-channel equations, we
provide the conversion factor used to convert angstrom and
debye units into atomic units, that is, 18 0.39354113 au
and 1 A= 1.88972688 au. In atomic units, the equilibrium
position of CO is given as 2.132 au. The potential energy of
CO can be written as the power series féfm

VeoR) = Veo(@ & BZ(1 + bz + b,7 + b7 + b,7) (61)

energyV(r,R0) of Ar + CO has the form expected, the solid curve shows a large transition probability
at A = +4 cml. This corresponds to the dipole-allowed
V(r,R0) = Z V.(r,R)P,(cosh) = transition for CO fromv = 0,j = 0tov = 1, = 1; the laser
o frequency is almost in resonance with this dipole-allowed

given in Table 5. Note that the= 1, ] = 1 level may have a
rotational transition tov = 1,j = 0 or a rotational excitation to
wherePp(cos ) values are the Legendre polynomials. The Ar a higher rotational level (e.gv,= 1,j = 2), but these transition
+ CO potential energy has been fully developed and discussedprobabilities are smaller than that from= 0,j =0 tov = 1,
by Parker and Pack. j = 1 as shown in Figure 1. We also notice that there are

Z \_/nm(r)(R — R)"P,(cos®) (62) transition. The energy defect for the exact resonance of CO is
nm



5510 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Li et al.

- — 02->1 A
== 02->10
03 031 ——— 02511 7]
3 == 02-->12 A
> >~ _ | !\
£025 £025
£ £
S 02 S 02
& -
= =
S 015 Sol1s
& ol & ol
0.05 0.05
N -
0 o o 1 S NNy, o AT - SRy
-10 -5 0 5 10 -10 5 0 5 10
Energy Defect Energy Defect
Figure 2. Ar + CO (01— 1), E = 0.01514 au. Figure 3. Ar + CO (02— 1), E = 0.01514 au.
significant transition probabilities aboit = —8, —4, and+8 | o3t ' ' ' ' ' _
cm-tin Figure 1, which is because the rotational states of CO 5 77 §3->10 i
can be excited by the collision partner Ar. For example, the L= 03-->12 _
transition probability ah = —4 cnr! can be thought of asa &2 gas| 7 03-->13 i
two-step process, a rotational excitation frons 0,j = 0 tov 5 L .
= 0,j = 1 and then a photon absorption to energy defeet S 02+ _
—4 cnm L. This corresponds to the dipole-allowed transition from E L .
v=0,j=1tov =1,j = 0. Without the collision partner Ar, £ 0151 —
we cannot produce this transition and the transition probability 'Z - E
should be zero. Likewise, without the laser field, this transition 5 0.1t -
is impossible.
Figure 2 shows the transition probabilities from= 0, j = 0.051
1tov = 1. Again, the solid curve represents the summation of . ) .
the transition probability over the final rotational states. The Opp == 5 0 5 10
transition probabilities fromv = 0, ] = 1 to all final rotational Energy Defect

states are also shown in Figure 2 with different line types. We Figure 4. Ar + CO (03— 1), E = 0.01514 au.
notice that there are two peaks (large transition probabilities)

of the solid curve in Figure 2. The first peak is At= +8 I 001 | ' ' '
cm™1, which corresponds to the dipole-allowed transition from 03k o7 00->10
v=0,j=1tov =1, = 2. The second peak is & = —4 ¢

cm~1, which corresponds to the dipole-allowed transition from
v=0,j=1tov=1,j = 0. We notice that there is a significant
transition probability abouh = +4 cnt L. This corresponds to
a two-step process, first a rotational transition frens 0, ] =
ltov =0,j =0, then a photon absorption to energy def&ct
= +4 cnrl. Again, without the collision partner Ar and the
laser field, this two-step process cannot be generated and its€ ¢
transition probability should be zero. =
For the transition probabilities from=0,j = 2 tov = 1, 0.05
there is a large transition probability At= —8 cni ! as shown
in Figure 3. This corresponds to the dipole-allowed transition 0 0
fromv =0,j =2tov =1, = 1. Note that though the = 1, Energy Defect
j = 1 level may have a rotational transitionto= 1,j = 0 or Figure 5. Ar + CO (00— 1), E = 0.01508 au.
a rotational excitation to higher rotational level, these transition
probabilities are smaller than that from= 0,j = 2 tov = 1, at A = —4, +4, and+8 cnrl, which represent multistep
i = 1. We also notice that there are significant transition processes to final states= 1,j =0;v =1,j = 1; andv = 1,
probabilities abouA = —4, +4, and+8 cn'! in Figure 3, j = 2 as shown in Figure 4.
which represent multistep processes to final states1, j = If we keep the same laser intensity (x010° watt/cn?) but
0;v=1,j=1;andv = 1,j = 2, respectively. Note that the  |ower the relative energi to 0.01508 au, which only opens
transition probabilities fromw = 0, j = 2 to the specific  the final rotational states up tp= 2, we can observe the
rotational states are also shown in Figure 3 with different line transition probability fronw = 0 with some initial rotational
types. states to the = 1 states as we did in tHe= 0.01514 au case.
In Figure 4, the solid curve is the transition probability from Figure 5 shows the transition probabilities frare= 0,j = 0 to
v =0,] = 3 tov = 1. Examining the solid curve, we would v = 1. Here, the solid curve is the summation of the transition
expect a large transition probability At= —12 cnT, which probabilities over the final rotational states. The transition
corresponds to the dipole-allowed transition fron¥ 0, ) = 3 probabilities to the specific rotational states are also shown in
tov =1,j = 2. There are also significant transition probabilities Figure 5 with different line types. As for the solid curve, there
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Figure 7. Ar + CO (02— 1), E = 0.01508 au.

is a large transition probability at = +4 cm! as expected.
This corresponds to the dipole-allowed transition frers 0,
j=0tov =1,j = 1. With the collision partner Ar and the
laser field, we also obtain significant transition probabilities
aboutA = —8, —4, and+8 cnTL. These transition probabilities
correspond to the multistep processes from 0,j = 0tov =
1,j=1,v=1,j=0;andv =1, = 2. Figure 6 shows the
transition probabilities fromr =0, = 1 tov = 1. As we look

at the solid curve in the figure, we find two large transition
probabilities as we found iB = 0.01514 au. The first one is at
A = +8 cntl, which corresponds to the dipole-allowed
transition fromv = 0,j = 1tov = 1,j = 2. The second one
is at A = —4 cnT1, which corresponds to the dipole-allowed
transition fromv = 0,j = 1 tov = 1, ] = 0. Note that the
transition probabilities fromr = 0, j = 1 to the specific

rotational states are shown in Figure 6 with different line types.

For the transition probabilities from=0,j =2 tov = 1, we
would expect a large transition probability at= —8 cnr! as
shown in Figure 7. This corresponds to the dipole-allowed
transition fromv = 0,j = 2tov = 1, = 1. Figure 7 includes
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Figure 9. Ar + CO (01— 1), E = 0.01502 au.

to the dipole-allowed transition from=0,j = 0tov = 1,j

= 1. Note that the level = 1, ) = 1 may have a rotational
transition tov = 1, = 0, but this transition probability is much
smaller than that froo» = 0,j = 0tov = 1,j = 1 as shown
in Figure 8. Figure 9 shows the transition probabilities frem
=0,j =1tov = 1. The large transition probability & = —4
cm™! of the solid curve corresponds to the dipole-allowed
transition fromv =0,j = 1tov =1,j = 0. The levelr = 1,

j = 0 may then have a rotational excitationito= 1, = 1.
This transition is much smaller than that fram= 0,] = 1 to
v =1,j = 0 as shown in Figure 9.

V. Conclusion

In this paper, we have developed the general theory for an
atom—diatom system interacting with a laser field. The multi-
polar gauge is applied in order to obtain gauge invariance. This
theory is valid for both strong laser fields and weak laser fields
and can be directly applied to the weak laser field case, where
we use the long wavelength approximation to simplify the

the transition probabilities to the specific rotational states out Hamiltonian. In the future, this theory will be used to study

ofv=20,] =2

We now reduce the relative energy to 0.01502 au, which will
only open the final rotational states upjte- 1. Therefore, we
would not expect the dipole-allowed transition frers 0, ] =
ltov =1, = 2. Let’s first look at the transition probabilities
fromv = 0,] = 0tov = 1 as shown in Figure 8. The solid

weak laser field coherent control of an atediatom system.
For the strong laser field, we quantized the laser field and
combined the laser Hamiltonian with the field-free Hamiltonian.
A general theory was developed for both adiabatic and non-
adiabatic interactions.

Our computer code has been examined with the theory for

curve again represents a summation of the transition probabilitiesthe strong laser field case. As an example, we studied the
over the final rotational states. Again, we obtain a large transition collisions of Ar with CO in the presence of an intense laser
probability at energy defect = +4 cnm 1, which corresponds  field. We presented rotatiesvibration transition probabilities
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